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ABSTRACT

The most common method of verifying multicategory probabilistic forecasts such as are used in probabilistic
quantitative precipitation forecasting is through the use of the ranked probability score. This single number
description of forecast accuracy can never capture the multidimensional nature of forecast quality and does not
inform the forecaster about the sources of forecast deficiencies. A new type of reliability diagram is developed
here and applied to probabilistic quantitative precipitation forecasts from a university contest. This diagram is
shown to potentially be useful in helping the forecaster to correct some errors in assigning the categorical
probabilities.

1. Introduction

A particularly informative way of conveying quan-
titative precipitation forecast information is to express
them as a vector of probabilities for a set of categories.
For example, the Model Output Statistics, or MOS (Dal-
lavalle et al. 1992) computes precipitation forecast prob-
abilities for the categories 0 # V , 0.01 in., 0.01 # V
, 0.10 in., 0.10 # V , 0.25 in., 0.25 # V , 0.50 in.,
0.50 # V , 1.00 in., and 1.00 # V in., where V is the
verification (observed) amount (1.0 in. 5 25.4 mm). In
the Cornell University forecast contest (Hamill and
Wilks 1995), we adopted this set of categories and
ranked the competing forecasts using the ranked prob-
ability skill score, or RPSS (Wilks 1995), which is based
on the ranked probability score (Epstein 1969; Murphy
1971; Daan 1985). This RPSS is a single number in-
dicating the fractional improvement over a reference
forecast. An RPSS of 0.0 indicates no difference in skill
over the reference forecast, and an RPSS of 1.0 indicates
a perfect forecast. In this contest, the reference forecast
was persistence. As the RPSS is a single number, it
distills the forecast performance to an understandable
measure that is necessary for ranking competing fore-
casts. However, a forecaster seeking to understand how
her forecasts are in error is not illuminated by the RPSS.
Are the forecasts too sharp (specific), or biased? Are
25% of the forecasts on average below the 25th per-
centile of forecast distribution? The RPSS gives no such
information. Hence, a new verification methodology
was sought.
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The reliability diagram (Wilks 1995) is frequently
used for assessing probability forecasts for binary events
such as the probability of measurable precipitation. In
the reliability diagram (Fig. 1), at a regular set of fore-
cast probabilities such as 0%–100% percent in 10% in-
tervals, the observed relative frequency of event oc-
currence is calculated and plotted. The diagram is well
suited to assessing the ability to calibrate forecasts for
binary events, but the use of this diagram with multi-
category forecasts is not straightforward. Perhaps reli-
ability diagrams could be generated by collapsing the
multiple categories to binary probability forecasts. For
example, the reliability for the event V $ 0.10 in. (2.5
mm) can be calculated by subtracting from 1.0 the prob-
abilities assigned to the categories 0 # V , 0.01 in.
and 0.01 # V , 0.10 in. and tallying the observed
relative frequency at the regular forecast probabilities.
However, not all forecast verification questions can be
answered after this simplification. For example, consider
the user who is concerned only with the ability to assess
categorical probabilities correctly for forecasts expected
to verify in the 0.10–0.50 in. (2.5–12.7 mm) range. In
such a circumstance, perhaps, another reliability dia-
gram could be generated at the 0.50-in. threshold. How-
ever, the method for making inferences about the prob-
ability distribution from the two diagrams together is
not clear. Further, a very large sample size is typically
needed to sufficiently populate all of the probability
bins; otherwise, the diagrams are noisy and useless.

The remainder of this article will demonstrate a tech-
nique for generating a new type of reliability diagram
that does not require the conversion to a binary event;
it is somewhat similar to the ‘‘P–P plot’’ (Wilks 1995).
In doing so, the ‘‘multicategory reliability diagram’’
(hereafter called MCRD) is shown to be superior to
simple reliability diagrams in assessing some probabil-
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FIG. 1. Hypothetical reliability diagrams showing observed relative frequency as a function
of forecast probabilities for (a) climatological forecasts, (b) forecasts exhibiting minimal reso-
lution, (c) forecasts showing an underforecasting bias, (d) forecasts showing good resolution at
the expense of reliability, (e) reliable forecasts of a rare event, and (f ) verification dataset limited
by small sample size. Inset boxes indicate frequency of use of the forecasts. Reprinted with
permission from Wilks (1995).

FIG. 2. Illustration of the allocation of probability for various quan-
tiles given qmin and qmax are the lowest and highest quantiles where
the observation and forecast have the same category.

ity forecast deficiencies in a simple manner. The MCRD
will be shown to be intermediate in its complexity: as
a multidimensional assessment of forecast quality, it
cannot replace the RPSS for ranking competing fore-
casts. On the other hand, the MCRD collapses the di-
mensionality of the joint distribution of forecasts and
observations, and thus cannot give a complete descrip-
tion of forecast quality. Section 2 will outline the me-
chanics of generating the MCRD; section 3 demon-
strates an application of the diagram to forecasts from
the Cornell University contest. Section 4 concludes.

2. Generating the multicategory reliability
diagram

A conventional reliability diagram synthesizes wheth-
er probability forecasts for a binary (yes/no) event are
well calibrated; at any given forecast probability of
event occurrence, the observed relative frequency
should be similar. The MCRD adopts the alternative goal
of determining the average percentage of observations
below prespecified quantiles (percentiles) of the forecast
distribution. Hereafter, this will also be denoted as the
‘‘calibration’’ or ‘‘reliability’’ for a given quantile,
though this terminology is perhaps nonstandard. To
achieve perfect calibration, averaged over many forecast
distributions, 25% of the observations should be below
the 25th percentile of the distributions, 75% below the
75th percentile, and so on.

Suppose probability forecasts are to be made for J
mutually exclusive and collectively exhaustive catego-
ries, such as the six MOS categories listed in section 1.
On a given ith forecast day, a forecaster issues a prob-
ability forecast vector with elements yij, j 5 1, . . . , J,
and i 5 1, . . . , N, where N is the total number of
forecasts made (say, over many months of forecasting
each day). For simplification, let us assume that prob-
abilities for each category are rounded to the nearest
10%, for example, yi 5 [0.7, 0.2, 0.1, 0, 0, 0].

This forecast vector is reexpressed as a vector of cat-
egory numbers at a discrete set of quantiles, or percen-
tiles within the distribution. The calibration will later
be computed at these quantiles. For simplification, rather
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FIG. 3. Multicategory reliability diagram for five forecast contestants (a) climatology; (b) persistence; (c) automated, MOS-based scheme;
(d) the author’s subjective forecasts; and (e) forecast with dry bias. The inset box indicates the frequency of various category errors at each
forecast percentile; the darker the box, the higher the percentage with that category error. Error bars indicate the 10th and 90th percentiles
as determined through bootstrap testing.

than keeping track of the calibration at all quantiles,
computations here will be performed only at preset
quantiles at the middle of each 10% increment of the
forecast. For example, the fifth quantile q 5 .05 will be
used to represent the quantiles .00 , q # .10, and sim-
ilarly q 5 .15 is used to represent .10 , q # .20; this
is consistent with the initial simplification of rounding

categorical probabilities to the nearest 10%. To reex-
press the forecast vector in terms of category numbers,
define a forecast category vector zi, i 5 1, . . . , N,
composed here of 10 entries ziq, where q 5 {0.05, 0.15,
. . . , 0.95}. A forecast vector yi is converted into a
vector z i representing the forecast category number at
each quantile. Hence, for the forecast of yi 5 [0.7, 0.2,
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FIG. 3. (Continued)

0.1, 0, 0, 0], zi.05 5 . . . 5 zi.65 5 1, zi.75 5 zi.85 5 2,
and zi.95 5 3, or, zi 5 [1, 1, 1, 1, 1, 1, 1, 2, 2, 3].

The calibration Cq for a given quantile q is the prob-
ability that the observed category oi is less than the
forecast category at this quantile, averaged over all N
forecasts:

Cq 5 P{oi , ziq}. (1)
For a single day’s forecast at a given quantile, there are
three possibilities: oi , ziq, oi 5 ziq, or oi . ziq. If oi

, ziq, P(oi , ziq) 5 1, and similarly, if oi . ziq, P(oi

, ziq) 5 0. If oi 5 ziq, then the probability is determined
as follows. Suppose in the example above, the observed
category was 2. Then, the 70th–90th percentile have the
same category as the observation. For 0.0 , q # 0.70,
the forecast category is 1 and oi . ziq, so P(oi , ziq)
5 0. Similarly, 0.90 , q # 1.0 the forecast category
is 3 and P(oi , ziq) 5 1. Hence the probabilities 0 and
1 are boundary conditions at the 70th and 90th percen-
tiles. Probabilities for quantiles in between vary linearly
so perfect forecasts (all probability and observation in
the same category) are perfectly calibrated. Let qmin and

qmax be the lowest and highest quantiles where the ob-
servation and forecast have the same category. Then

5 0
if o . zi iq5 (q 2 q )/(q 2 q )min max minP(o , z ) (2)i iq if o 5 zi iq

5 1
if o , z . i iq

Figure 2 illustrates this.

The MCRD is generated by plotting Cq against q.
Error bars are also plotted that represent the 10th and
90th percentiles of resampled multicategory reliabilities
generated via a bootstrap test (Wilks 1995). The boot-
strap used here was run 200 times.

Accurate calibration at each quantile is not a full in-
dication of forecast quality. For example, forecasts may
be nonspecific yet well calibrated; it is of course pref-
erable to have a forecast that is both sharp and cali-
brated. Hence, included on the MCRD is a colored
checkerboard plot of the forecast minus observed cat-
egories at the various quantiles. Darker colors on the
checkerboard indicate more highly populated bins. A
perfect forecast will have a black stripe at 0 category
error and perfect calibration. Note that the checkerboard
plot only indicates the category differences between
forecasts and observations; the observation categories
are never indicated. Thus, the MCRD does not illustrate
the full complexity of the joint forecast/observation dis-
tributions.

As a summary of the checkerboard plot, the mean
absolute category error between forecast and observed
is noted, averaged over all forecasts and all quantiles.
Further, the 10th and 90th percentiles of the average
category error are also given to indicate the range of
uncertainty. These were also generated from a 200-sam-
ple bootstrap test.

3. Demonstration using forecast contest data

Using precipitation forecasts generated in the Cornell
University forecast contest during the academic year
1995/96, the MCRD is demonstrated. The next day’s
total 24-h rainfall was predicted on a total of N 5 124
days. Data from five ‘‘contestants’’ will be shown: cli-
matology; persistence; an automated, MOS-based fore-
cast; the author’s subjective forecasts; and a forecast
with a dry bias. For all forecasts, probabilities were set
for the MOS categories described in section 1, and prob-
abilities for each category were rounded to the nearest
10th. The climatology forecast is a generated from the
distribution of observed categories over the 124 days.
The actual distribution was yi ø [0.48, 0.23, 0.12, 0.09,
0.04, 0.04]. Since forecasts must be rounded to the near-
est 10th, this was changed to yi 5 [0.5, 0.2, 0.1, 0.1,
0.1, 0]. The MOS-based forecasts combined the 12-h
probability of precipitation (PoP) forecasts into a single
24-h PoP (Wilks 1990a), and then assessed probabilities
for nonzero precipitation amount categories using the
PoP and gamma distributions fit to conditional clima-
tologies (Wilks 1990b). The biased forecasts were cre-
ated by adjusting the author’s subjective forecasts so
that the forecast categories above the fifth percentile
were shifted by 10%. For example, in each forecast, zi.15

is shifted up to zi.25, zi.25 to zi.35, and so on.
Reliability diagrams for each contestant are shown in

Figs. 3a–e. The climatology forecast in Fig. 3a appears
well calibrated; deviations from calibration are not sig-
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FIG. 4. Conventional reliability diagram for the author’s precipita-
tion forecasts, with a threshold of 0.10 in. (2.54 mm). FIG. 5. Multicategory reliability diagram for the subset of the au-

thor’s precipitation forecasts where the median forecast was greater
than or equal to 0.10 in.

nificant and are likely due to the truncation of the cli-
matology distribution to the nearest 10th.

Consider next the persistence forecast in Fig. 3b.
Here, 100% of the probability is allocated to the cate-
gory in which the previous day’s precipitation amount
occurred. Hence, persistence forecast categories are
identical across all quantiles. As shown, its reliability
curve is too flat; the forecast categories for the lower
quantiles were set too high on average. The opposite is
true at the higher quantiles, where far fewer than ex-
pected observation categories were lower than the fore-
cast category. Also, as noted in the checkerboard plot,
there were many forecasts with multicategory errors, as
indicated by the relatively dark shades assigned to non-
zero category errors and the average category error of
1.40. Since each day’s category forecast was the same
for all quantiles, the checkerboard plot of category er-
rors appears as horizontal bands.

The automated, MOS-based forecasts (Fig. 3c) and
the author’s forecasts (Fig. 3d) are both well calibrated.
However, as shown by the lower average category error
and the more confined shades on the checkerboard plot,
the author’s subjective forecasts tend to be sharper and
lower in error than those from the automated forecasts.
Both have lower category errors than climatology or
persistence.

The biased forecasts are not well calibrated, as ex-
pected. Fewer than expected observations were in cat-
egories less than the forecast category, especially at
higher quantiles. To remedy this, more probability needs
to be allocated to the higher categories, so that the quan-
tiles of the probability distribution are shifted up to

higher categories. This makes sense, as the artificial
biased forecasts were created through a reverse process,
described earlier. In general, when the reliability line is
above the diagonal, there is a moist bias at these quan-
tiles; when below the diagonal, a dry bias.

The usefulness of MCRDs is illustrated through a
comparison with a conventional reliability diagram. For
example, the author wished information on the errors
in the forecast probability distribution for events with
significant precipitation, category 3 and greater (0.10
in. and above). A conventional reliability diagram for
the author’s forecasts at the 0.10-in. threshold is pre-
sented in Fig. 4. As shown, the information that can be
gleaned from the reliability diagram is nil because of
the inadequate sample size for many of the forecast
probabilities (N 5 124, and the majority of the forecasts
at 0% probability of greater than 0.10 in.). Compare this
with Fig. 5, an MCRD for the subset of forecasts where
the median forecast (q.5) was greater than 0.10 in. Here
there are N 5 27 forecasts at each quantile, making
inferences much more trustworthy because of the greater
sample size. As shown, at the highest quantiles there is
a moist bias, though the deviation from perfect calibra-
tion is barely significant at the 10% level. This suggests
that if future categorical forecast distributions have sim-
ilar characteristics, they can be adjusted in subsequent
forecasts by slightly shifting the forecast probability dis-
tribution. By allocating less probability to higher pre-
cipitation categories, the right tail of the distribution is
lessened and the forecast categories for higher quantiles
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are lowered. This will have the effect of lessening the
number of observations that are lower than the threshold
at this quantile, achieving better calibration.

4. Conclusions

The extension of the reliability diagram to multiple-
category probabilistic forecasts is presented here. This
new diagram is shown to be useful for evaluating some
errors in the assessment of probability distributions in
such forecasts, though it cannot replace the RPSS for
ranking contestants nor does it provide a complete de-
scription of the forecast error. Despite this, the MCRD
works well even for relatively small sample sizes, when
conventional reliability diagrams are inadequate.
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